La mécanique quantique en 40 minutes

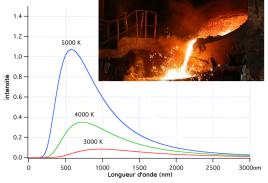
Christophe Chatelain

Institut Jean Lamour, Université de Lorraine, France

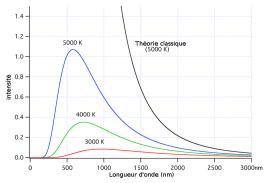
4 février 2014

Plan

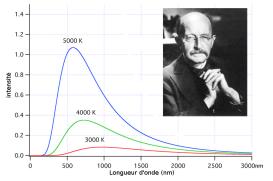
- Pourquoi la mécanique quantique ?
 - Émission du corps noir
 - Spectres atomiques
 - Atome de Bohr
- Mécanique ondulatoire
 - Vers l'atome de Schrödinger
 - Onde ou particule ?
 - Effet tunnel
- Superposition d'états quantiques
 - Chat de Schrödinger
 - Oscillations des neutrinos
 - L'ordinateur quantique


James Clerk Maxwell (1871)

"... in a few years, all the physical constants will have been approximately estimated and [..] the only occupation which then be left to the men of science will be to carry these measurements to another place of decimal."


Corps noir

Tout corps émet un rayonnement qui ne dépend que de sa température.

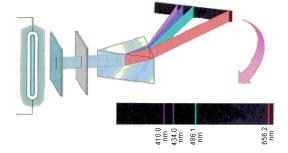

Corps noir

Tout corps émet un rayonnement qui ne dépend que de sa température.

Corps noir

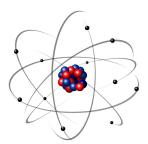
Tout corps émet un rayonnement qui ne dépend que de sa température.

1900 : Planck reproduit la courbe expérimentale en supposant que la lumière n'est émise que par paquets d'énergie

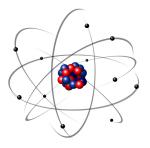

$$E = \hbar \omega$$

1905 : Einstein suppose la quantification du rayonnement électromagnétique et explique l'effet photo-électrique.

Spectres atomiques


1752 : Melvill observe que les flammes, teintées avec des métaux ou des sels, donnent, après passage dans un prisme, des spectres de raies.

1802: Wollaston observe sept raies noires dans la lumière solaire.


Atome de Bohr

1911 : Rutherford découvre que l'atome est essentiellement vide ! Son modèle planètaire d'atome est instable.

Atome de Bohr

1911 : Rutherford découvre que l'atome est essentiellement vide ! Son modèle planètaire d'atome est instable.

1913: Bohr suppose que seules certaines orbitales sont accessibles puisque la transition implique

$$\Delta F = \hbar \omega$$

Vers l'atome de Schrödinger

1923 : de Broglie suppose qu'une onde est associée à chaque particule. Les orbitales atomiques stables sont celles pour lesquelles l'onde est stationnaire.

1926 : Equation de Schrödinger

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t) + V(\vec{r})\psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

Vers l'atome de Schrödinger

1923 : de Broglie suppose qu'une onde est associée à chaque particule. Les orbitales atomiques stables sont celles pour lesquelles l'onde est stationnaire.

1926 : Equation de Schrödinger

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t) + V(\vec{r})\psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

Dès 1927, la mécanique ondulatoire est remplacée par la théorie quantique des champs.

Equation de Schrödinger pour une particule libre

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t)=i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

8 / 16

Equation de Schrödinger pour une particule libre

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t)=i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

Solution: onde plane

$$\psi(\vec{r},t) = \text{Cste} \times e^{i(\vec{k}.\vec{r} - \omega t)}$$

Equation de Schrödinger pour une particule libre

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t)=i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

Solution: onde plane

$$\psi(\vec{r},t) = \text{Cste} \times e^{i(\vec{k}.\vec{r} - \omega t)}$$

On constate que

$$egin{aligned} -rac{\hbar^2}{2m}\Delta\psi(ec{r},t) &= rac{\hbar^2k^2}{2m}\psi(ec{r},t) \ i\hbarrac{\partial}{\partial t}\psi(ec{r},t) &= \hbar\omega\psi(ec{r},t) \end{aligned}$$

Equation de Schrödinger pour une particule libre

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t)=i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

Solution: onde plane

$$\psi(\vec{r},t) = \text{Cste} \times e^{i(\vec{k}.\vec{r} - \omega t)}$$

On constate que

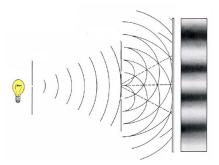
$$egin{aligned} -rac{\hbar^2}{2m}\Delta\psi(ec{r},t) &= rac{\hbar^2k^2}{2m}\psi(ec{r},t) \ i\hbarrac{\partial}{\partial t}\psi(ec{r},t) &= \hbar\omega\psi(ec{r},t) \end{aligned}$$

On retrouve

$$\frac{p^2}{2m} = E, \quad (\vec{p} = m\vec{v})$$

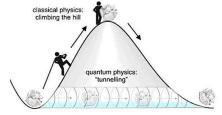
avec les relations de de Broglie

$$\vec{p} = \hbar \vec{k}, \qquad E = \hbar \omega$$

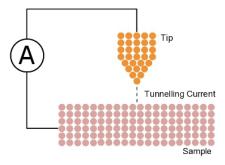

Onde ou particule ?

Mais où est la particule ?

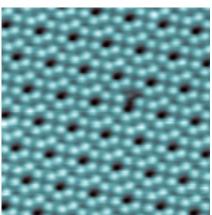
Onde ou particule?


La probabilité de l'observer au point \vec{r} est $|\psi(\vec{r},t)|^2$.

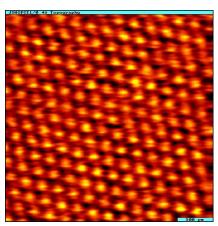
Onde et particule!

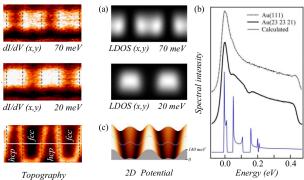

Effet tunnel

Franchissement d'une barrière de potentiel

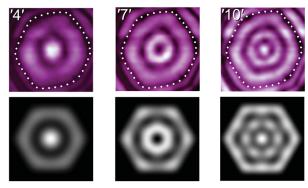

Effet tunnel

Franchissement d'une barrière de potentiel





Nanotechnologies: voir et manipuler directement les atomes.


États électroniques de surface

Reconstruction de surface $Au(23\ 23\ 21)$. Marches de phases hcp et fcc phases confinent les électrons de surface.

États électroniques de surface

Pyramides d'argent déposées sur une surface Cu(111).

Chat de Schrödinger

Une superposition d'états quantiques

$$\psi(\vec{r},t) = c_1\psi_1(\vec{r},t) + c_2\psi_2(\vec{r},t)$$

est aussi un état quantique!

Au cours du temps, l'amplitude de l'état chat mort augmente.

Oscillations des neutrinos

Il existe trois types de neutrinos : ν_e , ν_μ et ν_τ . Dans les années 1990, on constatait un déficit de neutrinos ν_e en provenance du soleil.

Fonction d'onde du neutrino libre :

$$\psi_{
u_e}(ec{r},t)\sim e^{i(ec{k}.ec{r}-\omega t)}$$

où l'énergie est $\hbar\omega=\sqrt{p^2c^2+m^2c^4}$.

Oscillations des neutrinos

Il existe trois types de neutrinos : ν_e , ν_μ et ν_τ . Dans les années 1990, on constatait un déficit de neutrinos ν_e en provenance du soleil.

Superposition de deux type de neutrinos de masses différentes (faibles) :

$$\psi_{\nu_e} = \cos\theta\psi_1 + \sin\theta\psi_2$$

$$\psi_{\nu_{\mu}} = -\sin\theta\psi_1 + \cos\theta\psi_2$$

avec

$$\psi_{i}(t) \sim e^{i(\vec{k}.\vec{r} - \sqrt{\hbar^2 k^2 c^2 + m_i^2 c^4} t/\hbar)}$$

Petit à petit, on obtient un déphasage de ψ_1 et ψ_2 qui se traduit par une transformation de ψ_{ν_e} en ψ_{ν_μ} .

L'ordinateur quantique

L'idée est de construire une superposition d'états quantiques

$$\psi(\vec{r},t) = c_1\psi_1(\vec{r},t) + c_2\psi_2(\vec{r},t) + \dots$$

et de faire évoluer différemment chaque état $\psi_i(\vec{r},t)$. Chaque ψ_i peut par exemple correspondre à un calcul différent : **calcul massivement parallèle**.